天大2018年6月考试《数值计算方法》离线作业考核试题【标准答案】

作者:佚名 字体:[增加 减小] 来源:互联网 时间:2018-06-13 23:54

数值计算方法 要求: 一、 独立完成,下面五组题目中,请任选其中一组题目作答,满分100分; 二、答题步骤: 1. 使用A4纸打印学院指定答题纸(答题纸请详见附件); 2. 在答题纸上使
数值计算方法
要求:
一、 独立完成,下面五组题目中,请任选其中一组题目作答,满分100分;
二、答题步骤:
1. 使用A4纸打印学院指定答题纸(答题纸请详见附件);
2. 在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括学号、姓名等基本信息和答题内容,请写明题型、题号;
三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word
??? 文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;
1. 上传文件命名为“中心-学号-姓名-科目.doc”
2. 文件容量大小:不得超过20MB。
提示:未按要求作答题目的作业及雷同作业,成绩以0分记!

题目如下:
第一组:
一、 简述题(共50分)
1、 (28分)
已知方程组 ,其中

列出Jacobi迭代和Gauss-Seidel迭代法的分量形式。求出Jacobi迭代矩阵的谱半径。
2、 (22分)
用牛顿法求方程 在 之间的近似根
(1) 请指出为什么初值应取2?
(2) 请用牛顿法求出近似根,精确到0.0001。
二、计算题(29分)
用反幂法求矩阵 的对应于特征值 的特征向量

三、分析题(21分)

(1)写出解 的牛顿迭代格式
(2)证明此迭代格式是线性收敛的





第二组:
一、 计算题(共100分)
1、 (25分)
用Gauss-Seidel迭代法求解线性方程组??? = ,

取x(0)=(0,0,0)T,列表计算三次,保留三位小数。

2、 (26分)
用最小二乘法求形如 的经验公式拟合以下数据:
? 19 25 30 38
? 19.0 32.3 49.0 73.3

3、 (22分)
求A、B使求积公式 的代数精度尽量高,并求其代数精度;利用此公式求 (保留四位小数)。
4、 (27分)
已知
? 1 3 4 5
? 2 6 5 4
分别用拉格朗日插值法和牛顿插值法求 的三次插值多项式 ,并求 的近似值(保留四位小数)。




第三组:
一、 论述题(共53分)
1、 (27分)
确定求积公式 的待定参数,使其代数精度尽量高,并确定其代数精度.(27分)
2、(26分)
叙述在数值运算中,误差分析的方法与原则是什么?

二、计算题(共47分)
1、(30分)
用列主元消去法解线性方程组??

2、(17分)
已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式 及f (1,5)的近似值,取五位小数。






第四组:
一、计算题(共76分)
1、(22分)用高斯消元法求解下列方程组

2、(31分)
用雅可比方法求矩阵 的特征值和特征向量
3、(23分)
求过点(-1,-2),(1,0)(3,-6),(4,3)的三次插值多项式

二、简述题(24分)
写出梯形公式和辛卜生公式,并用来分别计算积分






第五组:
一、 综合题(共82分)
1、 (28分)
已知下列函数表:

0 1 2 3

1 3 9 27
(1)写出相应的三次Lagrange插值多项式;
(2)作均差表,写出相应的三次Newton插值多项式,并计算 的近似值。
2、(24分)
??? 求方程组 的最小二乘解
3、(30分)
已知线性方程组
(1)写出雅可比迭代公式、高斯-塞德尔迭代公式;
(2)对于初始值 ,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算 (保留小数点后五位数字)
二、简述题(共18分)
1. 数值求积公式 是否为插值型求积公式?为什么?其代数精度是多少?



Tag: ?

作业咨询:
点击这里给我发消息

论文咨询:
点击这里给我发消息

合作加盟:
点击这里给我发消息

服务时间:
8:30-24:00(工作日)